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Polymerized phantom membranes are revisited using a nonperturbative renormalization-group approach.
This allows one to investigate both the crumpling transition and the low-temperature flat phase in any internal
dimension D and embedding dimension d and to determine the lower critical dimension. The crumpling phase
transition for physical membranes is found to be of second order within our approximation. A weak first-order
behavior, as observed in recent Monte Carlo simulations, is however not excluded.
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Membranes form a particularly rich and exciting domain
of statistical physics in which the interplay between two-
dimensional geometry and thermal fluctuations has led to a
lot of unexpected behaviors going from flat to tubular and
glassy phases �see �1–4� for reviews�. Roughly speaking,
membranes fall into two groups �4�: fluid membranes, in
which the building monomers are free to diffuse. The con-
nectivity is thus not fixed and the membrane displays a van-
ishing shear modulus. In contrast, in polymerized mem-
branes the monomers are tied together through a potential
which leads to a fixed connectivity and to elastic forces.
While fluid membranes are always crumpled, polymerized
membranes, due to their nontrivial elastic properties, exhibit
a phase transition between a crumpled phase at high tem-
perature and a flat phase at low temperature with orienta-
tional order between the normals of the membrane �4–7�.
Amazingly, due to the existence of long-range forces medi-
ated by phonons, the correlation functions in the flat phase
display a nontrivial infrared scaling behavior �8–10�. Ac-
cordingly, the lower critical dimension above which an order
can develop appears to be smaller than 2 �10�, in apparent
violation of the Mermin-Wagner theorem.

Let us consider the general case of D-dimensional
nonself-avoiding �phantom� membranes embedded in a
d-dimensional space. Early � expansion �7� performed at
one-loop order on the Landau-Ginzburg-Wilson-type model
relevant to study the crumpling transition of polymerized
membranes has led to predict that just below the upper criti-
cal dimension D=4, the crumpling transition is of second
order for d�dcr=219 while it is of first order for d�dcr.
This leaves however open the question of the nature of the
transition in the physical �D=2,d=3� situation, the case �
=2 being clearly out of reach of such a one-loop order com-
putation. On the numerical side former Monte Carlo �MC�
studies �see �11,12� for reviews� predict a second-order be-
havior while more recent simulations �13,14� rather favor
first-order behaviors. There is however no definite conclu-
sion and no explanation for these versatile results.

In parallel to the investigation of the crumpling transition,
an effective elastic field theory has been used to probe the

flat low-temperature phase of membranes �4,5,8,10�. An �
expansion has been performed �8�, also at one-loop order,
below the upper critical dimension D=4, showing that this
flat phase is controlled by a nontrivial fixed point �FP�. How-
ever, again, this low order computation performed in the vi-
cinity of D=4 has been of no use to accurately determine the
properties of genuine 2D membranes such as the critical ex-
ponents and the lower critical dimension Dlc�d� above which
the flat phase can exist.

Significant progress has been realized with the use of
large-d expansion �10,15� and variant of, such as self-
consistent screening approximations �SCSA� �16� that have
allowed to evaluate the exponent � both at the crumpling
transition and in the flat phase as well as the dimension
Dlc�d�. However, the very nature of the approach, requiring
large values of d, makes doubtful the quantitative predictions
extrapolated at small d and even impossible the determina-
tion of the line dcr�D�, separating the first-order from the
second-order regions.

A flaw of the previous approaches to polymerized mem-
branes is that, due to their perturbative character, they are
unable to treat all aspects of the physics of membranes in-
cluding crumpling transition, flat phase, and lower critical
dimension and thus to get a global picture of the
renormalization-group �RG� phase diagram. In this article,
we propose an approach of polymerized membranes based
on a nonperturbative RG method �17� which has been ap-
plied successfully in both particle and condensed matter
physics �see �18–20� for reviews�. With this method that we
adapt to the treatment of extended objects, we are able to
describe within the same formalism, i.e., using a unique ef-
fective action and a unique set of RG equations, both the
crumpling transition and the flat phase of membranes. Con-
cerning the crumpling transition, we reproduce the results
obtained within the � expansion approach and at leading or-
der within the large-d approaches. Moreover, we determine
the line dcr�D� everywhere between D=4 and D=2. Our es-
timates of dcr�D=2��2 lead to predict a second-order phase
transition in the physical case but do not completely exclude
a weak first-order behavior. Our investigation of the flat
phase also allows to recover all previous perturbative results
including � and 1 /d expansions. Moreover we get, for all
values of d, a determination of the lower critical dimension
Dlc�d� above which the crumpling transition and flat phase
fixed points �FLFPs� are shown to coexist.
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Our approach is based on the concept of effective average
action �17� �see �18–20� for reviews�, �k�r�, where r=r�x� is
a d-dimensional external vector that describes the membrane
in the embedding space while x is a set of internal
D-dimensional coordinates, which labels a point within the
membrane. The quantity �k�r�, k being a running scale going
from a lattice scale k=� to the infrared scale k=0, has the
physical meaning of a coarse grained free energy where only
fluctuations with momenta q�k have been integrated out.
Thus, at the lattice scale �, �k=� identifies with the con-
tinuum limit of some lattice Hamiltonian while at long dis-
tance, i.e., at k=0, it identifies with the standard free energy
�. The k dependence, RG flow, of �k is provided by an exact
evolution equation �17�,

��k

�t
=

1

2
Tr���k

�2� + Rk�−1�Rk

�t
� , �1�

where t=ln k /�. The trace has to be understood as a
D-dimensional momentum integral as well as a summation
over internal indices. In Eq. �1�, Rk�q� is an effective infrared
cut-off function which suppresses the propagation of modes
with momenta q�k and makes that �k encodes only modes
with momenta q�k. A convenient cut-off is provided by
Rk�q�=Z�k4−q4�	�k2−q2�, where Z is a field renormalization
�see below�. It generalizes to translational-invariant action
density a cut-off �21� which has been largely used since it
leads to compact expressions. Finally, and of utmost impor-
tance, note that the term �k

�2� in Eq. �1� is, in principle, the
exact, i.e., full field-dependent, inverse propagator, the sec-
ond derivative of �k with respect to the field r, taken in a
generic nonvanishing field configuration. This is the fact at
the very origin of the nonperturbative character of the
method.

Let us now make precise the form of �k. It must be in-
variant under the group of Euclidean displacements, which
includes translations and rotations. This imposes to �k to be
a functional of �
r��r /�x
, 
=1. . .D, the order parameter,
and of scalars in both the embedding and membrane spaces.
An exact treatment of Eq. �1� would imply �k to enclose all
powers and derivatives of these Euclidean invariants. This
goal is however unrealistic, and one has to truncate �k. We
choose here an ansatz that allows both to make easily contact
with previous, perturbative, approaches and to realize our
program. It is given by

�k�r� =	 dDx
Z

2
��
�
r�2

+ u��
r . ��r − �2
��2 + v��
r . �
r − D�2�2, �2�

where Z, u, v, and � are the running couplings which param-
etrize the model, with the indices 
 and � running over
1 . . .D. This is, up to a redefinition of the couplings, the ac-
tion used in �7� to investigate the crumpling transition. Let us
recall the physics encoded in Eq. �2� at the mean-field level
with u�0 and u+vD�0. For �2=0, the minimum of �k is
given by a configuration where �
r vanishes which charac-
terizes a crumpled phase. For �2�0 this minimum is given
by a configuration r�x�=� 

=1

D x
e
, where the �e
� are D
orthonormal vectors, which corresponds to a D-dimensional

flat phase. Action �2� thus describes a transition between a
high-temperature crumpling phase and a low-temperature flat
phase. The excitation spectrum in the ordered phase is pro-
vided by d-D out-of-plane capillary waves and D in-plane
phonon modes. A crucial aspect of our approach is that since
we establish nonperturbative RG equations for the couplings
entering in Eq. �2�, and in particular for the coupling �, we
are able to tackle both the crumpling transition, typically
associated to a vanishing �, and the flat phase FP which is
reached by letting � run to infinity.

Technically, the flow equations for the couplings Z, u, v,
and � are obtained using their definitions in terms of func-
tional derivatives of the effective action �see �19,20,22� for
details� and applying RG Eq. �1�. In terms of dimensionless
quantities, these equations write as follows:

�t�
2 = − �D − 2 + �t��2 +

4AD

D
��D − 1�

�2u + vD�
u + vD

l010
D+2

+
3u + �D + 2�v

u + vD
l001
D+2 + �d − D�l100

D+2� ,

�tu = �D − 4 + 2�t�u +
16AD

D�D + 2�
�2�3u + 2v�2l002

D+4

+ 4Du�u + v�l011
D+4 + u2�D2 + 2D − 8�l020

D+4 + 2u2�d

− D�l200
D+4� ,

�tv = �D − 4 + 2�t�v +
16AD

D�D + 2�
�− 4u�u + v�l011

D+4

+ �d − D��u2 + 2�D + 2�uv + D�D + 2�v2�l200
D+4

+ ��3D + 2�u2 + �D2 + D − 2��4uv + Dv2��l020
D+4

+ �9u2 + 6�D + 4�uv + �D2 + 6D + 12�v2�l002
D+4� �3�

where AD=2−D−1�−D/2 /��D /2�. The flow of Z that provides
the function �t=−d ln Z /dt, giving the critical exponent � at
a FP, is too long to be displayed here �see �22��. In Eq. �3�
labc
D is a shortcut for

labc
D =

− 1

4AD

�̂

�t
	 dDq

1

�P0�q��a

1

�P1�q��b

1

�P2�q��c
, �4�

where Pi�q�=Zq4+Rk�q�+mi
2q2 , i=0,1 ,2 and �̂ /�t only

acts on Rk. These so-called “threshold functions” �see
�19,20�� control the relative role of the different modes,
phonons and capillary waves, within the RG flow. In Eq. �4�,
the mass m0=0 is associated to the d-D transversal capillary
modes while m1

2�4�2u and m2
2�8�2�u+v� are masses asso-

ciated to the D phonons modes that split up into D−1 modes
with mass m1 and one mode with mass m2.

The crumpling transition. Let us first consider the crum-
pling transition. To recover the RG equations derived pertur-
batively in �7� one expands Eq. �3� in powers of both �=4
−D and the couplings u and v that are of order � at any
putative nontrivial FP. This also corresponds to an expansion
in powers of the phonon masses, which are small at the
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crumpling transition FP. Using the fact that the threshold
functions entering in the flow of u and v have a universal,
cut-off independent, limit at vanishing masses in D=4 given
by labc

8 =1, one obtains

�tu = − �u +
�d + 21�u2 + 20vu + 4v2

24�2 ,

�tv = − �v +
�d + 15�u2 + 4�3d + 17�vu + 4�6d + 7�v2

48�2 .

�5�

Up to a change in variable �v→v−u /4� these are the equa-
tions derived in �7�. We recall that, at sufficiently high values
of d, i.e., d�dcr=219, just below D=4, the sets of Eqs. �3�
and �5� admit a stable �in the u and v directions� FP associ-
ated to the crumpling transition called crumpling transition
fixed point �CTFP�. Still at d�dcr, there exists another FP,
close to the CTFP, which is unstable and that, when the
dimension d is lowered to dcr, annihilates with the CFTP,
defining the curve dcr�D�. A large-d analysis of Eq. �3� can be
also easily done. The leading contributions come from the
capillary modes which enter in Eq. �3� through the terms
proportional to d-D. With our cut-off function l100

D =4 /D and
l200
D =8 /D so that the coordinates of the CTFP are given by

�cr
2 =16AD /D�D2−4�, ucr= �16−D2�D�2+D� / �256dAD�, and

vcr=−�16−D2�D / �256dAD�. The corresponding critical ex-
ponents are: �=1 / �D−2�+O�1 /d� and �=O�1 /d� in agree-
ment with �6,10�.

To tackle with the physics below D=4 we have numeri-
cally solved the FP equations between D=4 and D=2, a
dimension in which the effects of truncation start to be im-
portant. The right part of Fig. 1 summarizes our results: one

finds a smooth curve dcr�D� which starts at dcr=219 in D
=4 and reaches dcr�2 in D=2 leading to predict a second-
order phase transition for physical membranes. In this last
case one finds, at the CTFP, a thermal exponent �=0.52 and
�=0.627 which compares well with the results provided by
the large-d expansion �=2 /3 �6,10� and MC results �
=0.71�5� �23� but less with the Monte Carlo Renormalization
Group �MCRG� �=0.85�15� �24� and the SCSA �=0.535
�16�. At our level of approximation, our results display a
weak dependence with respect to the cut-off function Rk�q�
that induces an error on the curve dcr�D�. Using another cut-
off, Rk�q�=Zq4 / �exp�q4 /k4�−1�, we have evaluated the error
bar on dcr�D=2�, which is typically of order dcr1. This
means that one cannot exclude dcr�D=2� to be close to, or
even slightly above, d=3 so that the crumpling transition for
genuine membranes would be predicted to be of weak first
order in agreement with recent MC results �13,14�. This
point will be further analyzed in the near future �22�.

The flat phase. The equations relevant to study the flat
phase are easily obtained in our formalism by considering
the regime ��1 in the RG flow Eq. �3�, which corresponds
to a regime where the phonon masses are very large and thus
to a regime dominated by the fluctuations of the capillary

waves, as expected in the deep flat phase. Setting d̃=d−D
one gets

�tu = �D − 4 + 2�t�u +
256d̃u2ÃD

D�D + 2��D + 4��D + 8�
,

�tv = �D − 4 + 2�t�v

+
128d̃�u2 + 2�D + 2�uv + D�D + 2�v2�ÃD

D�D + 2��D + 4��D + 8�
,

�t =
128�D + 4��D2 − 1�u�u + 2v�AD

�D4 + 6D3 + 8D2��u + v� + 128�D2 − 1�u�u + 2v�AD
,

�6�

with ÃD=AD�8+D−�t� and, for 
=1 /�2,

�t
 = �D − 2 + �t�
 −
16d̃�6 + D − �t�
2AD

D�D2 + 8D + 12�
, �7�

an equation which generalizes, to any value of D and d, the
one obtained in the limit of large elastic constants, D=2 and
large d, in �6�. Note that the function �t in Eqs. �6� and �7�
determines, at a FP, the exponent � of the capillary waves.
The analog exponent, �u, for the phonon modes, is obtained
by the usual Ward identity �10�: �u=4−D−2� that follows
from rotational invariance.

The set of Eq. �6�, when expanded in powers of �=4−D,
degenerates into those derived perturbatively in �8�. Accord-
ingly, Eqs. �6� and �7� admit three nontrivial FPs, among
which one, the FLFP, is stable with respect to all directions
including 
 down to a dimension Dlc, the lower critical di-

mension. In the limit of large codimension d̃ the coordinates
of the FLFP are 
 f =0 �� f

2→��, uf = �16−D2�D�2
+D� / �256dAD�, and v f =−�16−D2�D / �256dAD�, with these
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FIG. 1. On the right part, the curve dcr�D� which separates the
region with a CTFP and without a CTFP. On the left part, the lower
critical dimension Dlc�d�.
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two last quantities being identical to those of the CTFP. At
the FLFP one finds �=O�1 /d� in agreement with previous
large-d approach �10�. Moreover Eq. �7� indicates that, at
large d, the FLFP is stable down to Dlc�d→��=2, in agree-
ment with �10� which predicts: Dlc�d→��=2−2 /d
+O�1 /d2�. Note also that the RG flow on u and v indicates

that for d̃=0 and at any nontrivial FP one has the exact result
�= �D−4� /2 �16�. For physical membranes one finds �
=0.849 which compares well with the SCSA �=0.821 �16�
and numerical simulations �=0.750�5� �23� and �=0.81�3�
�25� but less with the large-d result �=2 /3 �10�.

Finally Eqs. �6� and �7� also allow a determination of
Dlc�d� for all values of d. To do this we use the equality �10�:
��Dlc ,uf ,v f�=2−Dlc at the FLFP which defines Dlc as the
dimension at which phonons and capillary waves scale iden-
tically �10�. In fact, RG Eq. �7� provides another interpreta-
tion of Dlc. Indeed, above Dlc, Eq. �7� possesses a solution
with 
�0 which corresponds to the CTFP. Indeed, just
above Dlc, one has D−2+�cr�1 so that the nontrivial solu-
tion of Eq. �7� obeys 
cr�1 and thus �cr�1 which is pre-
cisely the regime of validity of this equation. Thus, just
above Dlc, Eq. �7� well describes both the CTFP and the
FLFP which coexist and Dlc corresponds to the dimension at
which the CTFP collapses to the FLFP which becomes un-
stable. Using the relation ��Dlc ,uf ,v f�=2−Dlc one obtains

d =
Dlc

4 + 6Dlc
3 − 3Dlc

2 + 4Dlc

2�− Dlc
2 − Dlc + 6�

, �8�

which, once inversed, provides the expression of Dlc�d�. The
corresponding curve is displayed on the left part of Fig. 1. In
particular one has, for genuine membranes, Dlc�d=3��1.33.
This result displays a remarkable stability with respect to a
change in the cut-off function. With Rk�q�
=Zq4 / �exp�q4 /k4�−1� one finds Dlc�d=3��1.30. Our results
compare well with the large d, Dlc�d=3�=4 /3 �10�, and
SCSA Dlc�d=3�=1.5 �16�.

In summary, we have investigated the crumpling transi-
tion and flat phase of D-dimensional polymerized mem-
branes embedded in a d-dimensional space within a nonper-
turbative RG approach. We have determined the whole line
dcr�D� that separates the second- and first-order regions, the
lower critical dimension Dlc�d�, and the critical exponents.
More sophisticated ansatz should be used to systematically
increase the accuracy of our results although implying a
heavy algebra. Finally, our approach can be applied to many
other situations in which the perturbative approaches lead to
an unsatisfying quantitative or even qualitative description
such as in self-avoiding, anisotropic, or disordered mem-
branes �1,2,26�.
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